Form Assistant AI¶
Intelligent form completion with auto-fill, validation, and real-time guidance
What Is Form Assistant AI?¶
Form Assistant AI goes far beyond tooltips. It actively participates in your deal analysis - suggesting values, validating inputs, flagging risks, and learning from your history.
Core AI Capabilities¶
1. Smart Auto-Fill¶
When you enter a property address, AI pre-populates fields:
Cleveland, OH 44105] end subgraph "AI Analysis" P[PropStream API] M[MLS Comps] C[County Records] R[Rental Data] end subgraph "Auto-Filled" F1["ARV: $158,000
(3 comps avg)"] F2["Rehab Est: $38,500
(based on 1955 build)"] F3["Rent: $1,450/mo
(market rate)"] F4["Holding: $6,200
(4 mo typical)"] end A --> P & M & C & R P & M & C & R --> F1 & F2 & F3 & F4 style A fill:#3b82f6,color:#fff style F1 fill:#22c55e,color:#fff style F2 fill:#22c55e,color:#fff style F3 fill:#22c55e,color:#fff style F4 fill:#22c55e,color:#fff
What Gets Auto-Filled:
| Field | Data Source | Confidence |
|---|---|---|
| ARV | 3 nearest comps, adjusted | 85% |
| Rehab Estimate | Age, sqft, typical scope | 70% |
| Rent Estimate | Rentometer + local data | 80% |
| Holding Costs | Market avg DOM × carrying | 75% |
| Closing Costs | Standard % by state | 90% |
| Property Tax | County records | 95% |
💡 User Override: All auto-filled values are suggestions. Click to edit or accept.
2. Real-Time Validation¶
AI validates every field as you type, catching errors before you submit:
┌─────────────────────────────────────────────────────────────┐
│ ARV (After Repair Value) │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ $185,000 │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
│ ⚠️ AI VALIDATION WARNING │
│ ────────────────────────────────────────────────────────── │
│ Your ARV of $185,000 is 17% HIGHER than comparable sales: │
│ │
│ • 456 Oak St (0.2mi): Sold $152,000 - 3bd/2ba, 1,380 sqft │
│ • 789 Elm Ave (0.3mi): Sold $161,000 - 3bd/2ba, 1,420 sqft │
│ • 321 Pine Dr (0.4mi): Sold $158,000 - 3bd/1.5ba, 1,350 sqft│
│ │
│ 📊 Suggested ARV: $155,000 - $162,000 │
│ │
│ [Accept $158,000] [Keep $185,000] [Explain my reasoning] │
└─────────────────────────────────────────────────────────────┘
Validation Rules Applied:
| Check | Threshold | Action |
|---|---|---|
| ARV vs Comps | ±15% | ⚠️ Warning |
| Rehab vs Scope | ±25% | ⚠️ Warning |
| Profit Margin | <10% | 🔴 Red flag |
| 70% Rule | Exceeds MAO | 🔴 Red flag |
| Holding vs Timeline | Mismatch | ⚠️ Warning |
| Cash-on-Cash | <8% BRRRR | 🟡 Caution |
3. Scenario Modeling¶
See how changes impact your deal in real-time:
❌ Deal becomes loss"] I2["Profit: $4,800
⚠️ Below 10% margin"] I3["Profit: $17,500
✅ Strong deal"] end C1 & C2 & C3 & C4 --> W1 & W2 & W3 W1 --> I1 W2 --> I2 W3 --> I3 style I1 fill:#ef4444,color:#fff style I2 fill:#eab308,color:#000 style I3 fill:#22c55e,color:#fff
Scenario Sliders:
| Adjust | Range | See Impact On |
|---|---|---|
| ARV | ±20% | Profit, ROI, Deal Score |
| Rehab | ±30% | Profit, cash needed |
| Timeline | 2-8 months | Holding costs, ROI |
| Purchase | ±$10K | MAO compliance, profit |
| Interest Rate | 6-14% | Holding costs, BRRRR cash flow |
4. Conversational Refinement¶
AI asks clarifying questions to improve accuracy:
Questions AI Might Ask:
| Field | Clarifying Question |
|---|---|
| Rehab | "What's your scope? Kitchen/baths/cosmetic/full gut?" |
| ARV | "Are you targeting retail buyers or investors?" |
| Timeline | "Using contractors or DIY? Full-time or weekends?" |
| Financing | "Hard money, DSCR, conventional, or cash?" |
| Exit | "Flip, BRRRR, or long-term rental?" |
5. Proactive Risk Warnings¶
AI flags deal-killers before you get too far:
🚨 AI RISK DETECTION
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
⛔ CRITICAL: Single Exit Strategy
Your numbers only work for flip. If market slows:
• Rental cash flow: -$180/mo (negative)
• BRRRR refi: Would leave $28K in deal
Recommendation: Reduce purchase price by $8K to enable backup exits
⚠️ WARNING: Thin Margin
10.2% profit margin is below Cameron's 15% comfort zone
• Room for error: Only $16,000
• One surprise = break-even deal
📹 Watch: "Why I Require 15% Minimum" - Module 9 (3:47)
ℹ️ NOTE: Market Cooling
ZIP 44105 showing 8% price decline last 90 days
• DOM increased from 24 → 38 days
• Consider conservative ARV of $150K
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
6. Learning & Personalization¶
AI improves by learning from YOUR deals:
Actual: $42K] H2[Deal 2: Estimated $28K rehab
Actual: $31K] H3[Deal 3: Estimated $40K rehab
Actual: $48K] end subgraph "AI Learning" L[Pattern Detection:
You underestimate by ~18%] end subgraph "Personalized Suggestion" S["Your estimate: $38,000
AI adjusted: $44,800
(+18% based on your history)"] end H1 & H2 & H3 --> L --> S style L fill:#3b82f6,color:#fff style S fill:#22c55e,color:#fff
Personalization Features:
| Feature | What It Learns |
|---|---|
| Rehab Accuracy | Your estimate vs actual delta |
| Timeline Accuracy | Your projected vs actual timeline |
| ARV Accuracy | Your ARV vs actual sale price |
| Preferred Markets | ZIP codes you analyze most |
| Deal Criteria | Your typical buy box parameters |
Field Intelligence Matrix¶
| Field | Auto-Fill | Validation | Scenarios | Learning |
|---|---|---|---|---|
| ARV | ✅ From comps | ✅ vs market | ✅ ±10-20% | ✅ Accuracy |
| Purchase Price | ❌ User input | ✅ vs MAO | ✅ Negotiation | ❌ |
| Rehab Estimate | ✅ Age/scope | ✅ vs typical | ✅ ±30% | ✅ Accuracy |
| Holding Costs | ✅ Calculated | ✅ vs timeline | ✅ Rate changes | ❌ |
| Closing Costs | ✅ % of price | ✅ vs typical | ❌ | ❌ |
| Rent Estimate | ✅ Market data | ✅ vs comps | ✅ Vacancy | ✅ Accuracy |
| Cap Rate | ✅ Calculated | ✅ vs market | ✅ Expense adj | ❌ |
Form Assistant by Tier¶
| Feature | Free | Solo | Pro | Team |
|---|---|---|---|---|
| Basic field definitions | ✅ | ✅ | ✅ | ✅ |
| Cameron's tips + video links | ❌ | ✅ | ✅ | ✅ |
| Smart auto-fill suggestions | ❌ | ❌ | ✅ | ✅ |
| Real-time validation | ❌ | ✅ | ✅ | ✅ |
| Scenario modeling | ❌ | ❌ | ✅ | ✅ |
| Conversational refinement | ❌ | ❌ | ✅ | ✅ |
| Proactive risk warnings | ❌ | ✅ | ✅ | ✅ |
| Personalized learning | ❌ | ❌ | ❌ | ✅ |
| Custom team defaults | ❌ | ❌ | ❌ | ✅ |
Technical Architecture¶
3,268 chunks] end subgraph "AI Layer" Claude[Claude API] Embed[Embeddings] end Form --> Auto & Valid & Scenario Auto --> Props & MLS Valid --> Price & Qdrant Scenario --> Claude Learn --> User Qdrant --> Embed --> Claude style Auto fill:#3b82f6,color:#fff style Valid fill:#f97316,color:#fff style Scenario fill:#6366f1,color:#fff style Learn fill:#22c55e,color:#fff style Claude fill:#22c55e,color:#fff
Implementation Roadmap¶
| Phase | Capability | Complexity |
|---|---|---|
| Phase 1 | Basic definitions + tips | ✅ Done |
| Phase 2 | Real-time validation | Medium |
| Phase 2 | Risk warnings | Medium |
| Phase 3 | Smart auto-fill | High |
| Phase 3 | Scenario modeling | High |
| Phase 4 | Conversational refinement | Very High |
| Future | Personalized learning | Very High |
Comparison: Basic Help vs AI Form Assistant¶
| Aspect | Basic Help (Tooltips) | AI Form Assistant |
|---|---|---|
| Input Method | User types everything | AI suggests, user confirms |
| Validation | None until submit | Real-time as you type |
| Data Sources | Static definitions | Live market data |
| Personalization | None | Learns from your history |
| Risk Detection | Manual review | Proactive warnings |
| Accuracy | Depends on user skill | AI-augmented estimates |
| Time to Complete | 15-20 minutes | 3-5 minutes |
Form Assistant AI transforms data entry into intelligent collaboration
See Deal Review AI for automated deal scoring
See Ask Cameron for natural language Q&A