Market Analytics AIΒΆ
Neighborhood trends, comp analysis, and market intelligence
What Is Market Analytics?ΒΆ
Market Analytics provides AI-powered market insights that help investors understand neighborhood trends, validate ARV estimates, and spot opportunities before competitors.
graph TB
subgraph "Data Sources"
D1[PropStream API]
D2[MLS Data]
D3[County Records]
D4[Rental Data]
end
subgraph "Market Analytics AI"
A[Data Aggregation]
B[Trend Analysis]
C[Comp Scoring]
D[Opportunity Detection]
end
subgraph "Insights"
I1["π Price Trends
+4.2% YoY"] I2["π Inventory
2.1 months"] I3["π Comp Quality
Score: 85/100"] I4["π Hot ZIP Alert
44105"] end D1 & D2 & D3 & D4 --> A A --> B --> C --> D D --> I1 & I2 & I3 & I4 style A fill:#3b82f6,color:#fff style B fill:#3b82f6,color:#fff style C fill:#3b82f6,color:#fff style D fill:#3b82f6,color:#fff style I1 fill:#22c55e,color:#fff style I2 fill:#22c55e,color:#fff style I3 fill:#22c55e,color:#fff style I4 fill:#22c55e,color:#fff
+4.2% YoY"] I2["π Inventory
2.1 months"] I3["π Comp Quality
Score: 85/100"] I4["π Hot ZIP Alert
44105"] end D1 & D2 & D3 & D4 --> A A --> B --> C --> D D --> I1 & I2 & I3 & I4 style A fill:#3b82f6,color:#fff style B fill:#3b82f6,color:#fff style C fill:#3b82f6,color:#fff style D fill:#3b82f6,color:#fff style I1 fill:#22c55e,color:#fff style I2 fill:#22c55e,color:#fff style I3 fill:#22c55e,color:#fff style I4 fill:#22c55e,color:#fff
Key FeaturesΒΆ
1. Neighborhood Trend AnalysisΒΆ
| Metric | What We Track | Why It Matters |
|---|---|---|
| Median Price | 12-month trend | Is market appreciating? |
| Days on Market | Average DOM | How fast are homes selling? |
| Inventory Months | Active Γ· Sold | Buyer's or seller's market? |
| Flip Activity | Flips Γ· Total sales | Competition level |
| Price/SqFt | Trend by property type | Micro-market dynamics |
Example Output:
π ZIP Code: 44105 (Cleveland, OH)
βββββββββββββββββββββββββββββββββββ
π Median Price: $95,000 (+8.2% YoY)
β±οΈ Avg Days on Market: 24 days
π Inventory: 1.8 months (seller's market)
π Flip Activity: 15% of sales (moderate competition)
π° Price/SqFt: $72 (+$5 from last year)
π‘ AI Insight: "Strong appreciation in affordable tier.
DOM under 30 days indicates quick sales. Good market
for value-add flips if acquisition price is right."
2. Comp Analysis EngineΒΆ
How We Score Comps:
graph LR
subgraph "Comp Inputs"
C1[Distance]
C2[Recency]
C3[Size Match]
C4[Bed/Bath]
C5[Condition]
end
subgraph "Scoring"
S[AI Scoring
Engine] end subgraph "Output" O1["Comp 1: 92/100
Best match"] O2["Comp 2: 85/100
Good match"] O3["Comp 3: 71/100
Fair match"] end C1 & C2 & C3 & C4 & C5 --> S --> O1 & O2 & O3 style S fill:#3b82f6,color:#fff style O1 fill:#22c55e,color:#fff style O2 fill:#22c55e,color:#fff style O3 fill:#eab308,color:#000
Engine] end subgraph "Output" O1["Comp 1: 92/100
Best match"] O2["Comp 2: 85/100
Good match"] O3["Comp 3: 71/100
Fair match"] end C1 & C2 & C3 & C4 & C5 --> S --> O1 & O2 & O3 style S fill:#3b82f6,color:#fff style O1 fill:#22c55e,color:#fff style O2 fill:#22c55e,color:#fff style O3 fill:#eab308,color:#000
Comp Scoring Criteria:
| Factor | Weight | Scoring Logic |
|---|---|---|
| Distance | 25% | <0.25mi = 100, <0.5mi = 80, <1mi = 50 |
| Recency | 25% | <30 days = 100, <60 days = 80, <90 days = 60 |
| Size Match | 20% | Within 10% = 100, 20% = 70, 30% = 40 |
| Bed/Bath | 15% | Exact = 100, Β±1 bed/bath = 70 |
| Condition | 15% | Same condition = 100, Β±1 level = 70 |
AI Adjustments:
The AI also applies Cameron's methodology for adjustments:
- Basement: +$10K finished, -$5K if none
- Garage: +$5K per bay
- Lot size: Β±$1K per 1,000 sqft
- Age difference: Β±$2K per decade
3. Market Opportunity DetectionΒΆ
AI scans for investment opportunities matching your buy box:
flowchart TB
subgraph "Your Buy Box"
B1["SFH, 3bd/2ba"]
B2["Under $100K purchase"]
B3["ARV $150K+"]
B4["Cleveland metro"]
end
subgraph "AI Scanner"
S["Scans 1,000+
listings daily"] end subgraph "Alerts" A1["π 3 matches today"] A2["Deal: 123 Main St
Score: 85/100"] end B1 & B2 & B3 & B4 --> S --> A1 A1 --> A2 style S fill:#3b82f6,color:#fff style A1 fill:#f97316,color:#fff style A2 fill:#22c55e,color:#fff
listings daily"] end subgraph "Alerts" A1["π 3 matches today"] A2["Deal: 123 Main St
Score: 85/100"] end B1 & B2 & B3 & B4 --> S --> A1 A1 --> A2 style S fill:#3b82f6,color:#fff style A1 fill:#f97316,color:#fff style A2 fill:#22c55e,color:#fff
Alert Types:
| Alert | Trigger | Frequency |
|---|---|---|
| Hot Deal | Score >80, matches buy box | Instant |
| Price Drop | >10% price reduction | Daily |
| New Listing | Matches criteria | Daily |
| Market Shift | Trend change detected | Weekly |
How We Get the DataΒΆ
Data SourcesΒΆ
| Source | Data Type | Cost | Accuracy |
|---|---|---|---|
| PropStream | Property details, comps | $99-149/mo | High |
| County Records | Sales history, liens | Free | Official |
| MLS (via IDX) | Active listings | Varies | Real-time |
| Rentometer/Zillow | Rent estimates | Free tier | Moderate |
Technical ImplementationΒΆ
flowchart TB
subgraph "Data Ingestion"
I1[PropStream API]
I2[County Scraper]
I3[MLS Feed]
I4[Rent APIs]
end
subgraph "Processing"
P1[Data Normalization]
P2[Geocoding]
P3[Property Matching]
P4[Trend Calculation]
end
subgraph "Storage"
DB[(PostgreSQL)]
TS[(TimescaleDB)]
Cache[(Redis)]
end
subgraph "AI Layer"
AI[Claude API]
Embed[Embeddings]
end
I1 & I2 & I3 & I4 --> P1 --> P2 --> P3 --> P4
P4 --> DB & TS
DB --> Cache
Cache --> AI & Embed
style P1 fill:#3b82f6,color:#fff
style P2 fill:#3b82f6,color:#fff
style P3 fill:#3b82f6,color:#fff
style P4 fill:#3b82f6,color:#fff
style DB fill:#6366f1,color:#fff
style TS fill:#6366f1,color:#fff
style Cache fill:#6366f1,color:#fff
style AI fill:#22c55e,color:#fff
style Embed fill:#22c55e,color:#fff
API Rate Limits & CostsΒΆ
| Provider | Rate Limit | Est. Monthly Cost |
|---|---|---|
| PropStream | 10,000 calls/mo | $99-149 |
| Google Geocoding | 40,000/mo free | $0-50 |
| Rentometer | 500/mo free | $0-30 |
| Total | - | $100-230/mo |
Who Offers This Today?ΒΆ
Competitor ComparisonΒΆ
| Feature | Tuff Flips | PropStream | DealCheck | FlipperForce |
|---|---|---|---|---|
| Neighborhood trends | β AI-powered | β Basic | β | β |
| Comp scoring | β Weighted AI | β Manual | β | β |
| Buy box alerts | β Smart | β Basic | β | β |
| Cameron methodology | β Built-in | β | β | β |
| Deal integration | β Native | β Separate | β | β |
Our Edge: PropStream has data. We add AI interpretation using Cameron's methodology.
Market Analytics by TierΒΆ
| Feature | Free | Solo | Pro | Team |
|---|---|---|---|---|
| View market trends | β | β | β | β |
| Comp scoring | β | β | β | β |
| Buy box alerts | β | β | β | β |
| Custom market reports | β | β | β | β |
| API access | β | β | β | β |
Implementation TimelineΒΆ
| Phase | Feature | Complexity |
|---|---|---|
| Phase 3 | Basic neighborhood stats | Medium |
| Phase 3 | Comp scoring engine | High |
| Phase 4 | Buy box alerts | Medium |
| Future | Predictive analytics | Very High |
Market Analytics requires Pro tier or higher
See AI Overview for all AI features